Homework - Task 1

- The factorial function multiplies all who numbers from the chosen number down to 1.
- Example:
- $4!=4 * 3 * 2 * 1=24$
- $7!=7 * 6 * 5 * 4 * 3 * 2 * 1=5040$
- $1!=1$
- $0!=1$ (strangely, but defined to be like this)

$$
\begin{gathered}
n!=n \\
0=1 \\
1=1 \\
2=2 \\
3=6 \\
4=24 \\
5=120 \\
6=720 \\
7=5.040 \\
8=40.320 \\
9=362.880 \\
10=3.628 .800 \\
11=39.916 .800 \\
12=479.001 .600
\end{gathered}
$$

- Write a program that does the following
- Ask for an integer, for example, 6.
- Calculate the factorial of that number. In this example 6!.
- After the calculation, print out "Calculation finished!" using else clause.
- Output the result, like " 6 ! is 720. .
- Check your results with the numbers shown in the picture above.

Task 2

- Print out the following shapes
- a)

VVVVVVVV
VVVVVVVV
vVVVVVVV
vVVVVVVV
vVVVVVVV

- b)
\&\&
\&\&\&\&
\&\&\&\&\&\&
\&\&\&\&\&\&\&\&
- c)
£@£@£@£@£@f@
£@£@£@£@£@
£@£@£@£@
£@£@£@
£@£@
£@
- d)
*
* * *

$* * * * *$
$* * * * * * *$

Task 3

- We talked about text steganography last week - to hide a message by inserting random characters.
import random, string
myMessage $=$ "The passcode is five zero six eight."
newMessage = ""
for 1 in myMessage:
newMessage $=$ newMessage + random. choice (string.ascii_letters)
newMessage $=$ newMessage + random. choice (string.ascii_letters)
newMessage $=$ newMessage +1
print (newMessage)
- Now suppose you forgot the original message, and you only know
- the jumbled-up message - the value of newMessage as above
- the rule that the message was generated - every third letter matters
- You have to write a program to decode the jumbled up message and get the original message. Can you do that?

